SCIENCE

Year 11 Core Curriculum Evening Perins School 2023

KEY GCSE DATES – 2024

Biology paper 1 10th May

Chemistry paper 1 17th May

Physics paper 1 22nd May

Biology paper 2 7th June

Chemistry paper 2 11th June

Physics paper 2 14th June

Separate Science Path – 3 Sciences

BIOLOGY	CHEMISTRY	PHYSICS
1. Cell Level Systems	1. Particles	1. Matter
2. Scaling up	2. Elements and Bonding	2. Forces
3. Organism Level Systems	3. Chemical Reactions	3. Electricity
4. Community Level systems	4. Predicting Chemical Reactions	4. Magnetism
5. Genetics	5. Rate of Change	5. Waves
6. Global Challenges	6. Global Challenges	6. Radioactivity
		7. Energy
		8. Global Challenges

Biology Paper 1 Units 1-3 105 minutes 90 marks	50% of GCSE	Chemistry Paper 1 Units 1-3 105 minutes 90 marks	50% of GCSE	Physics Paper 1 Units 1-4 105 minutes 90 marks
Biology Paper 2 Units 4-6 105 minutes 90 marks	50% of GCSE	Chemistry Paper 2 Units 4-6 105 minutes 90 marks	50% of GCSE	Physics Paper 2 Units 5-8 105 minutes 90 marks

Biology GCSE 1-9 Chemistry GCSE 1-9 Physics

1-9

50%

Combined Science – 2 GCSE's

BIOLOGY	CHEMISTRY	PHY
1. Cell Level Systems	1. Particles	1. Matter
2. Scaling up	2. Elements and Bonding	2. Forces
3. Organism Level Systems	3. Chemical Reactions	3. Electricity and magnetism
4. Community Level systems	4. Predicting Chemical Reactions	4. Waves and Radioactivity
5. Genetics	5. Rate of Change	5. Energy
6. Global Challenges	6. Global Challenges	6. Global Challenges

Biology Paper 1 Units 1-3 70 minutes 60 marks	16.7% of GCSE	Chemistry Paper 1 Units 1-3 70 minutes 60 marks	16.7% of GCSE	Physics Paper 1 Units 1-3 70 minutes 60 marks	16.7% of GCSE
Biology Paper 2 Units 4-6 70 minutes 60 marks	16.7% of GCSE	Chemistry Paper 2 Units 4-6 70 minutes 60 marks	16.7% of GCSE	Physics Paper 2 Units 4-6 70 minutes 60 marks	16.7% of GCSE

Combined Science – 2 GCSE's

BIOLOGY	CHEMISTRY	PHYSICS
1. Cell Level Systems	1. Particles	1. Matter
2. Scaling up	2. Elements and Bonding	2. Forces
3. Organism Level Systems	3. Chemical Reactions	3. Electricity and magnetism
4. Community Level systems	4. Predicting Chemical Reactions	4. Waves and Radioactivity
5. Genetics	5. Rate of Change	5. Energy
6. Global Challenges	6. Global Challenges	6. Global Challenges

2 GCSE's eg:5-5, 6-5, 6-6 (U up to 9-9)

Maths in Science Equations

- Unlike previous years, the equations are not provided...
- Higher = 16 to recall and apply
- Foundation = 15 to recall and apply
- 5/6 equations will be supplied
 'Select and Apply'

density (kg/m³) = mass (kg)/volume (m³)	$\rho = \frac{m}{V}$
	r V
distance travelled (m) = speed (m/s) x time (s)	s = vt
acceleration (m/s²) = change in velocity (m/s)/time (s)	$a = \frac{\Delta v}{t}$
kinetic energy (J) = $0.5 \times \text{mass (kg)} \times (\text{speed (m/s)})^2$	$E_k = \frac{1}{2}mv^2$
force (N) = mass (kg) x acceleration (m/s 2)	F = ma
momentum (kgm/s) = mass (kg) x velocity (m/s)	p = mv
work done (J) = force (N) x distance (m) (along the line of action of the force)	$W = F\Delta s$
power (W) = work done (J)/time(s)	$P = \frac{W}{t}$
force exerted by a spring (N) = extension (m) x spring constant (N/m)	$F = k\Delta x$
gravity force (N) = mass (kg) x gravitational field strength, g (N/kg)	W = mg
(in a gravity field) potential energy (J) = mass (kg) x height (m) x gravitational field strength, g (N/kg)	$E_p = mgh$
charge flow (C) = current (A) x time (s)	Q = It
potential difference (V) = current (A) x resistance (Ω)	
energy transferred (J) = charge (C) x potential d' (V)	
power (W) = potential difference (V) x current (current (A)) ² x resistance (Ω)	30/
wave speed (m/s) = frequency (Hz) x wavelen	1
efficiency = useful output energy transfer (J)/inputransfer (J)	

Maths in Science

BIOLOGY	CHEMISTRY	PHYSICS	COMBINED SCIENCE
10%	20%	30%	20% across all papers

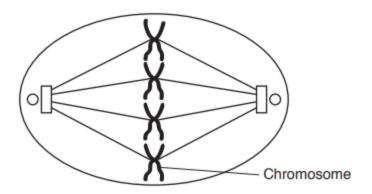
- Recognise and use expressions in standard form
- Significant figures
- Understand and use the symbols: =, <, <<, >>, < , ~</p>
- Calculate areas of triangles and rectangles, surface areas and volumes of cubes
- Draw and use the slope of a tangent to a curve as a measure of rate of
 - change
- Understand that y = mx + c represents a linear relationship
- Make order of magnitude calculations

Components in Science

Assessment objectives (AOs) are set by Ofqual and are the same across all Science GCSE specifications and all exam boards. The exams will measure how students have achieved the following assessment objectives.

AO1: RECALL

AO2: APPLICATION/UNSEEN INFOMRMATION


· ADD. Analysis information and ideas to interpret and avaluate make

AO3: PRACTICAL SKILLS

Assessment	Compone	Component weightings (approx %)							
objectives (AOs)	Biology Paper 1	Biology Paper 2	Chemistry Paper 1	Chemistry Paper 2	Physics Paper 1	Physics Paper 2	(appr		
AO1	37-43	37-43	37-43	37-43	37-43	37-43	40		
AO2	37-43	37-43	37-43	37-43	37-43	37-43	40		
AO3	17-23	17-23	17-23	17-23	17-23	17-23	20		
Overall weighting of components	16.6	16.6	16.6	16.6	16.6	16.6	104		

RECALL QUESTION

12 (a) The diagram shows a cell during one stage of mitosis.

Describe **two** things that happen to the chromosomes in the next stage of mitosis.

(chromosomes) separate / split / divide / pulled apart √

WHERE A CANDIDATE USES A DIAGRAM LOOK FOR THE CORRECT IDEAS LABELLED ON THE DIAGRAM

(chromatids) move to opposite ends / by spindle fibres √

IGNORE just by fibres

ALLOW AS AN EXTRA MARKING POINT

(two) new nuclei form / membrane forms around them / nuclear envelope forms around them ✓ IGNORE cell membrane splits

.......

... [2]

IGNORE references to DNA replication IGNORE cytokinesis / cell splitting

Chromosomes are made of DNA.

Describe the structure of DNA.

double helix √ polymer ✓

ALLOW polynucleotide ✓✓

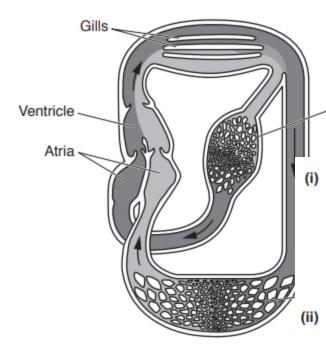
ALLOW AS EXTRA MARKING PO

contains (four) bases √ reference to ATCG √ (made up of) nucleotides ✓

contains sugar / deoxyribose / phosphate group

IGNORE deoxyribonucleic acid

APPLY QUESTION


(b) Lungfish are fish that have both gills and a lung.

When in water, the blood flows through the gills. When on land, blood flow to the gills is stopped and the blood enters the lung instead.

Lung

that of humans.

The diagram shows the circulatory system of a lungfish.

(heart has) three chambers / not four chambers ✓	
(heart has) one ventricle / not two ventricles ✓	
only one artery leaving (heart) ✓	[1]
	[1]

Write down one other way the structure of the lungfish circulatory system is different to

When lungfish and humans are on land, the human circulatory system is more efficient than that of lungfish.

(in humans) oxygenated and deoxygenated blood kept

Suggest why the human circ separate ✓

The lungfish circulatory system is different t

Blood in the lungfish can flow through gills a

PRACTICAL SKILLS

(b) The table shows his results.

Concentrati	ion	Mass of potato chip		_	_		
of sugar		(c) Plot a graph of the p	ercentage chang	e in mass	against conce	entration of sugar solu	tion and
solution (mol/dm ³		draw a line of best fit					
0.0	2						
0.2	2						
0.4	. ! ,						
0.6	Jse ideas	about osmosis to exp					
0.8		(chips) get bigger	/gain mass when	water mo	ves in		
1.0		(chips) get smalle	r/loses mass whe	n water m	oves out ✓		
alculate the p							
Record your an		and any two fron	n:				•••••
					tial inside		

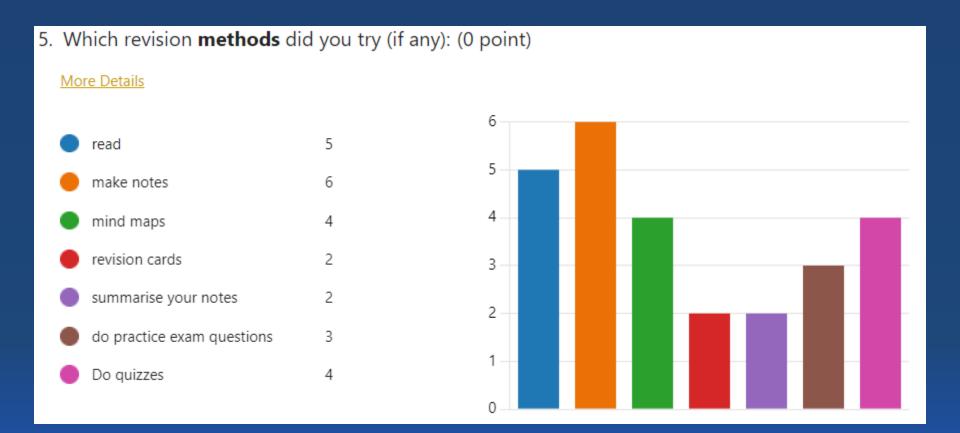
(so) water moves in when the water potential inside (cells) is less ✓

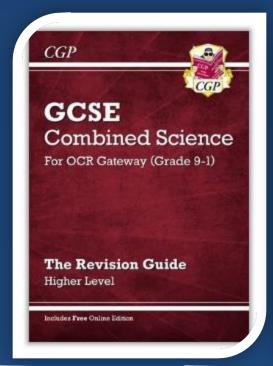
chip in high(er) concentration (of solution) **or** more than 0.2 mol/dm³ the water potential inside (cells) is **greater** ✓

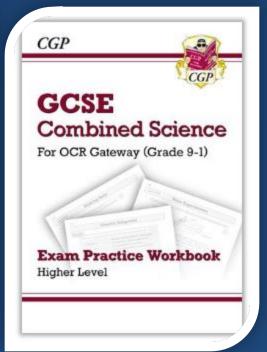
(so) water moves out when the water potential inside (cells) is **greater** ✓

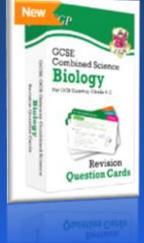
WHAT ARE STUDENTS DOING?

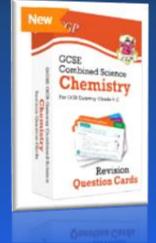
3. Select any of the ways you revised: (0 point)

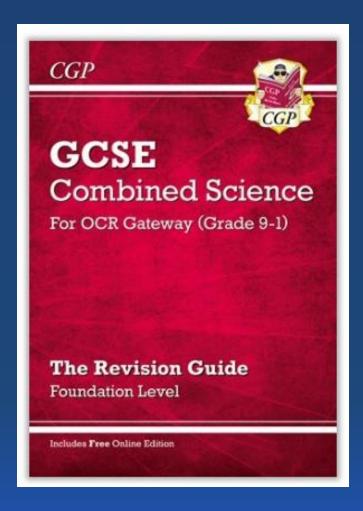

More Details

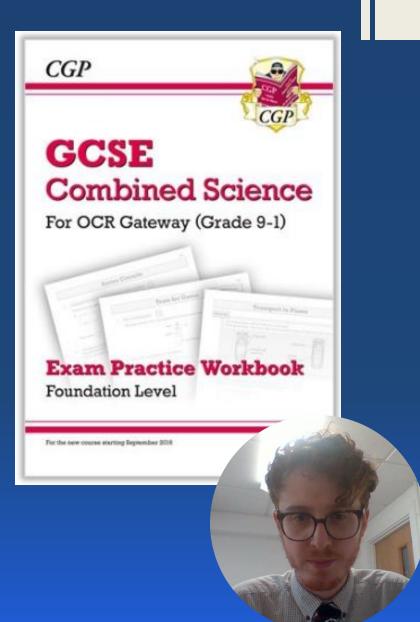

	Read my class notes	10
--	---------------------	----

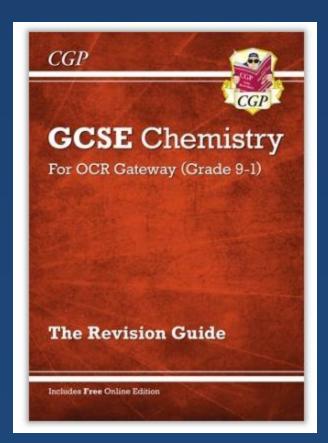

- Use the Kerboodle online textb... 5
- BBC bitesize 13
- You tube videos
 9
- Seneca learning 12
- Cognito 13
- Revision guides / workbooks 11
- Past exam papers 10
- OCR exam syllabus 1
- Sharepoint revision area
 0
- other ---- use the next question...

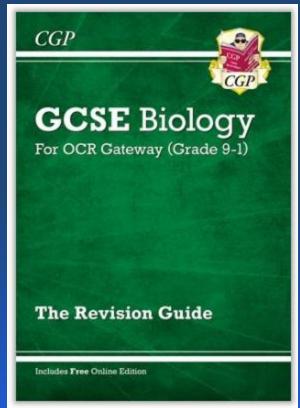


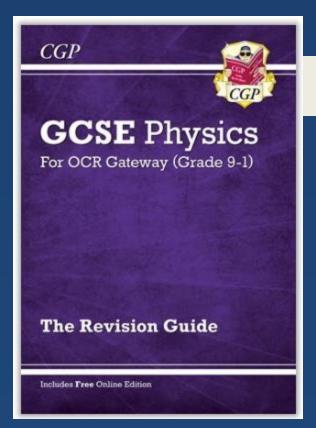

WHAT ARE STUDENTS DOING?

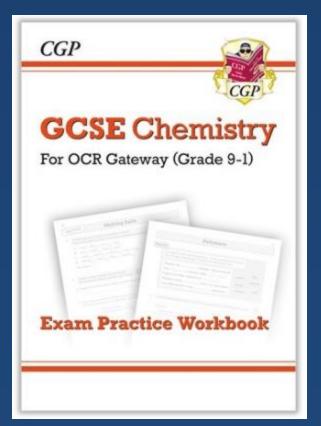


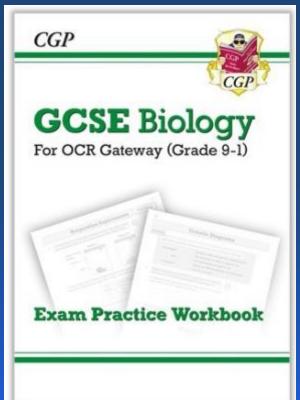


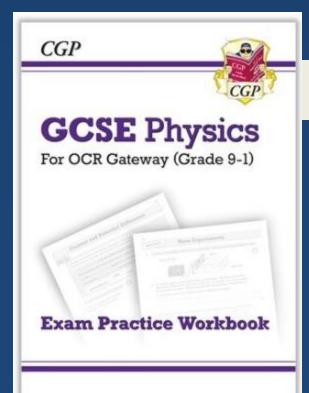












• Library

VIDEO LESSONS

FOR MATHS AND SCIENCE

Man Win

N Subscribed V

= Sort by

@Cognitoedu 553K subscribers 399 videos

Hi - we make video lessons for GCSE science and maths. The lessons give... >

HOME

VIDEOS

PLAYLISTS

CHANNELS

ABOUT

Created playlists

View full playlist

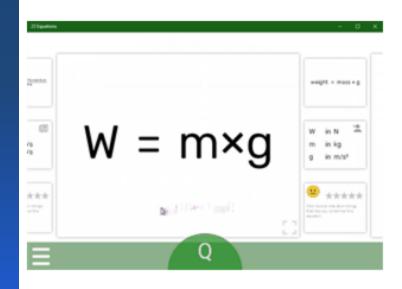
GCSE Chemistry (9-1)

View full playlist

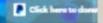
GCSE Physics (9-1)

View full playlist

GCSE Biology (9-1)


View full playlist

Learning Equations


The app works a like a pack of index cards. Tap on a section to expand it. There are word and symbol version and information about including commor

alternatives.

FreeScienceLessons.co.uk

Freesciencelessons o

302F. subscribers

HOME

VIDEOS

PLAYLISTS

COMMUNITY

CHANNELS

ABOUT

Q

How to revise effectively.

How to revise effectively.

effectively

How to revise effectively.

508,714 views · 3 years ago

In this video, i'm going to take you through ten top tips for effective revision. If you follow my advice, you'll put yourself in a great position to get the grades that you need.

http://www.aga.org.uk/subjects/scienc...

http://www.aqa.org.uk/subjects/scienc

READ MORE

FREESCIENCELESSONS RECOMMENDS

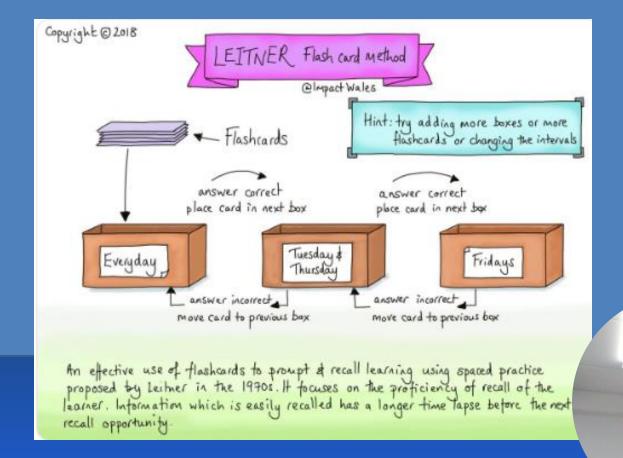
1. Encourage your child to prioritise their revision.

2. Encourage an environment where they can fully concentrate (no phones, music or distractions)

3. Reassure your child that revision <u>isn't easy</u>. 20 minutes trying to recall something tricky, using a revision guide to check what they missed then testing themselves is <u>MUCH</u> more effective than an hour copying out notes.


How to structure your revision:

Revising The Nervous System


There are 4 stages to effective revision:

- 1. What can you remember?
- 2. What did you forget?
- 3. Independent practise of knowledge recall and application
- 4. Reviewing what you still need to work on after the practise questions.

Task 1: What can you remember about The Nervous System? You can write notes or draw need to fill the box – you will probably want to add things in a bit.

4. Ask your child what they have revised – get them to explain something to you. Ask if you can test them on some flashcards, get them talking about what they should learn.

Thank you!

cognito

23 Equations

freesciencelessons

